3.374 \(\int \frac {(7+5 x^2)^2}{(4+3 x^2+x^4)^{3/2}} \, dx\)

Optimal. Leaf size=181 \[ -\frac {113 \sqrt {x^4+3 x^2+4} x}{28 \left (x^2+2\right )}-\frac {\left (9-113 x^2\right ) x}{28 \sqrt {x^4+3 x^2+4}}+\frac {9 \left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{4 \sqrt {2} \sqrt {x^4+3 x^2+4}}+\frac {113 \left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{14 \sqrt {2} \sqrt {x^4+3 x^2+4}} \]

[Out]

-1/28*x*(-113*x^2+9)/(x^4+3*x^2+4)^(1/2)-113/28*x*(x^4+3*x^2+4)^(1/2)/(x^2+2)+113/28*(x^2+2)*(cos(2*arctan(1/2
*x*2^(1/2)))^2)^(1/2)/cos(2*arctan(1/2*x*2^(1/2)))*EllipticE(sin(2*arctan(1/2*x*2^(1/2))),1/4*2^(1/2))*2^(1/2)
*((x^4+3*x^2+4)/(x^2+2)^2)^(1/2)/(x^4+3*x^2+4)^(1/2)+9/8*(x^2+2)*(cos(2*arctan(1/2*x*2^(1/2)))^2)^(1/2)/cos(2*
arctan(1/2*x*2^(1/2)))*EllipticF(sin(2*arctan(1/2*x*2^(1/2))),1/4*2^(1/2))*((x^4+3*x^2+4)/(x^2+2)^2)^(1/2)*2^(
1/2)/(x^4+3*x^2+4)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 181, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {1205, 1197, 1103, 1195} \[ -\frac {113 \sqrt {x^4+3 x^2+4} x}{28 \left (x^2+2\right )}-\frac {\left (9-113 x^2\right ) x}{28 \sqrt {x^4+3 x^2+4}}+\frac {9 \left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{4 \sqrt {2} \sqrt {x^4+3 x^2+4}}+\frac {113 \left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{14 \sqrt {2} \sqrt {x^4+3 x^2+4}} \]

Antiderivative was successfully verified.

[In]

Int[(7 + 5*x^2)^2/(4 + 3*x^2 + x^4)^(3/2),x]

[Out]

-(x*(9 - 113*x^2))/(28*Sqrt[4 + 3*x^2 + x^4]) - (113*x*Sqrt[4 + 3*x^2 + x^4])/(28*(2 + x^2)) + (113*(2 + x^2)*
Sqrt[(4 + 3*x^2 + x^4)/(2 + x^2)^2]*EllipticE[2*ArcTan[x/Sqrt[2]], 1/8])/(14*Sqrt[2]*Sqrt[4 + 3*x^2 + x^4]) +
(9*(2 + x^2)*Sqrt[(4 + 3*x^2 + x^4)/(2 + x^2)^2]*EllipticF[2*ArcTan[x/Sqrt[2]], 1/8])/(4*Sqrt[2]*Sqrt[4 + 3*x^
2 + x^4])

Rule 1103

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(2*q*Sqrt[a + b*x^2 + c
*x^4]), x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1195

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[
(d*x*Sqrt[a + b*x^2 + c*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q
^2*x^2)^2)]*EllipticE[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(q*Sqrt[a + b*x^2 + c*x^4]), x] /; EqQ[e + d*q^2, 0
]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1197

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(
e + d*q)/q, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]
/; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1205

Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{f = Coeff[Polynom
ialRemainder[(d + e*x^2)^q, a + b*x^2 + c*x^4, x], x, 0], g = Coeff[PolynomialRemainder[(d + e*x^2)^q, a + b*x
^2 + c*x^4, x], x, 2]}, Simp[(x*(a + b*x^2 + c*x^4)^(p + 1)*(a*b*g - f*(b^2 - 2*a*c) - c*(b*f - 2*a*g)*x^2))/(
2*a*(p + 1)*(b^2 - 4*a*c)), x] + Dist[1/(2*a*(p + 1)*(b^2 - 4*a*c)), Int[(a + b*x^2 + c*x^4)^(p + 1)*ExpandToS
um[2*a*(p + 1)*(b^2 - 4*a*c)*PolynomialQuotient[(d + e*x^2)^q, a + b*x^2 + c*x^4, x] + b^2*f*(2*p + 3) - 2*a*c
*f*(4*p + 5) - a*b*g + c*(4*p + 7)*(b*f - 2*a*g)*x^2, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*
a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IGtQ[q, 1] && LtQ[p, -1]

Rubi steps

\begin {align*} \int \frac {\left (7+5 x^2\right )^2}{\left (4+3 x^2+x^4\right )^{3/2}} \, dx &=-\frac {x \left (9-113 x^2\right )}{28 \sqrt {4+3 x^2+x^4}}+\frac {1}{28} \int \frac {352-113 x^2}{\sqrt {4+3 x^2+x^4}} \, dx\\ &=-\frac {x \left (9-113 x^2\right )}{28 \sqrt {4+3 x^2+x^4}}+\frac {9}{2} \int \frac {1}{\sqrt {4+3 x^2+x^4}} \, dx+\frac {113}{14} \int \frac {1-\frac {x^2}{2}}{\sqrt {4+3 x^2+x^4}} \, dx\\ &=-\frac {x \left (9-113 x^2\right )}{28 \sqrt {4+3 x^2+x^4}}-\frac {113 x \sqrt {4+3 x^2+x^4}}{28 \left (2+x^2\right )}+\frac {113 \left (2+x^2\right ) \sqrt {\frac {4+3 x^2+x^4}{\left (2+x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{14 \sqrt {2} \sqrt {4+3 x^2+x^4}}+\frac {9 \left (2+x^2\right ) \sqrt {\frac {4+3 x^2+x^4}{\left (2+x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{4 \sqrt {2} \sqrt {4+3 x^2+x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {\$Aborted} \]

Verification is Not applicable to the result.

[In]

Integrate[(7 + 5*x^2)^2/(4 + 3*x^2 + x^4)^(3/2),x]

[Out]

$Aborted

________________________________________________________________________________________

fricas [F]  time = 0.42, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (25 \, x^{4} + 70 \, x^{2} + 49\right )} \sqrt {x^{4} + 3 \, x^{2} + 4}}{x^{8} + 6 \, x^{6} + 17 \, x^{4} + 24 \, x^{2} + 16}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x^2+7)^2/(x^4+3*x^2+4)^(3/2),x, algorithm="fricas")

[Out]

integral((25*x^4 + 70*x^2 + 49)*sqrt(x^4 + 3*x^2 + 4)/(x^8 + 6*x^6 + 17*x^4 + 24*x^2 + 16), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (5 \, x^{2} + 7\right )}^{2}}{{\left (x^{4} + 3 \, x^{2} + 4\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x^2+7)^2/(x^4+3*x^2+4)^(3/2),x, algorithm="giac")

[Out]

integrate((5*x^2 + 7)^2/(x^4 + 3*x^2 + 4)^(3/2), x)

________________________________________________________________________________________

maple [C]  time = 0.01, size = 278, normalized size = 1.54 \[ \frac {352 \sqrt {-\left (-\frac {3}{8}+\frac {i \sqrt {7}}{8}\right ) x^{2}+1}\, \sqrt {-\left (-\frac {3}{8}-\frac {i \sqrt {7}}{8}\right ) x^{2}+1}\, \EllipticF \left (\frac {\sqrt {-6+2 i \sqrt {7}}\, x}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )}{7 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}}-\frac {50 \left (\frac {3}{14} x^{3}+\frac {4}{7} x \right )}{\sqrt {x^{4}+3 x^{2}+4}}+\frac {904 \sqrt {-\left (-\frac {3}{8}+\frac {i \sqrt {7}}{8}\right ) x^{2}+1}\, \sqrt {-\left (-\frac {3}{8}-\frac {i \sqrt {7}}{8}\right ) x^{2}+1}\, \left (-\EllipticE \left (\frac {\sqrt {-6+2 i \sqrt {7}}\, x}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )+\EllipticF \left (\frac {\sqrt {-6+2 i \sqrt {7}}\, x}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )\right )}{7 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}\, \left (i \sqrt {7}+3\right )}-\frac {140 \left (-\frac {1}{7} x^{3}-\frac {3}{14} x \right )}{\sqrt {x^{4}+3 x^{2}+4}}-\frac {98 \left (\frac {3}{56} x^{3}+\frac {1}{56} x \right )}{\sqrt {x^{4}+3 x^{2}+4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5*x^2+7)^2/(x^4+3*x^2+4)^(3/2),x)

[Out]

-50*(3/14*x^3+4/7*x)/(x^4+3*x^2+4)^(1/2)+352/7/(-6+2*I*7^(1/2))^(1/2)*(-(-3/8+1/8*I*7^(1/2))*x^2+1)^(1/2)*(-(-
3/8-1/8*I*7^(1/2))*x^2+1)^(1/2)/(x^4+3*x^2+4)^(1/2)*EllipticF(1/4*(-6+2*I*7^(1/2))^(1/2)*x,1/4*(2+6*I*7^(1/2))
^(1/2))+904/7/(-6+2*I*7^(1/2))^(1/2)*(-(-3/8+1/8*I*7^(1/2))*x^2+1)^(1/2)*(-(-3/8-1/8*I*7^(1/2))*x^2+1)^(1/2)/(
x^4+3*x^2+4)^(1/2)/(I*7^(1/2)+3)*(EllipticF(1/4*(-6+2*I*7^(1/2))^(1/2)*x,1/4*(2+6*I*7^(1/2))^(1/2))-EllipticE(
1/4*(-6+2*I*7^(1/2))^(1/2)*x,1/4*(2+6*I*7^(1/2))^(1/2)))-140*(-1/7*x^3-3/14*x)/(x^4+3*x^2+4)^(1/2)-98*(3/56*x^
3+1/56*x)/(x^4+3*x^2+4)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (5 \, x^{2} + 7\right )}^{2}}{{\left (x^{4} + 3 \, x^{2} + 4\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x^2+7)^2/(x^4+3*x^2+4)^(3/2),x, algorithm="maxima")

[Out]

integrate((5*x^2 + 7)^2/(x^4 + 3*x^2 + 4)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (5\,x^2+7\right )}^2}{{\left (x^4+3\,x^2+4\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5*x^2 + 7)^2/(3*x^2 + x^4 + 4)^(3/2),x)

[Out]

int((5*x^2 + 7)^2/(3*x^2 + x^4 + 4)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (5 x^{2} + 7\right )^{2}}{\left (\left (x^{2} - x + 2\right ) \left (x^{2} + x + 2\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x**2+7)**2/(x**4+3*x**2+4)**(3/2),x)

[Out]

Integral((5*x**2 + 7)**2/((x**2 - x + 2)*(x**2 + x + 2))**(3/2), x)

________________________________________________________________________________________